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Abstract

Brown adipocytes expressed a large variety of purinergic receptor subtypes. We investigated about the 

expression of P2X5 receptor subtype among purinergic receptor subtypes expressed in mouse adipose tissue. 

Ca2+ imaging showed that applied 10 μM ATP or 1 μM 2MeSATP (a P2X5, P2Y1 and P2Y11 agonist) increased 

intracellular Ca2+ concentration in brown adipocytes. RT-PCR and real-time PCR studies revealed that P2X5 

receptor mRNA was expressed much in mouse brown adipocytes but less in white adipocytes. The expression 

levels of P2X5 receptor mRNA in brown adipocytes were about nine times higher than that of white adipocytes. 

Western blotting studies suggested the expression of P2X5 receptor protein was detected in brown adipocytes 

but not in white adipocytes. Immunohistostaining studies indicated the expression of P2X5 receptor protein was 

shown on brown adipocytes but not on fibroblasts. Thus, P2X5 receptors have a function for Ca2+ rises and it 

can be available as tools to identify and target brown adipocytes. 
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Introduction

Brown adipocytes are present in all mammalian 

especially in neonates or cold-acclimated adult which 

are located in interscapular and armpit depots and 

mixed together with white adipocytes and fibroblasts. 

In response to cold exposure, heat is produced by 

uncoupling of respiration by the activation of un-

coupling proteins under the enhanced hydrolysis 

of neural lipids by the b-adrenergic activation of 

noradrenaline which is released from sympathetic 

nerves [1, 2, 3]. Simultaneously, sympathetic nerves 

are thought to release ATP [4]. Extracellular ATP also 

evokes a number of responses in brown adipocytes [5, 

6]. ATP plays a variety role of signal transductions in 

many cells. Mammalian purinergic receptors consist 

of seven P2X subtypes (ionotropic receptors: P2X1, 

P2X2, P2X3, P2X4, P2X5, P2X6 and P2X7) and eight 

P2Y subtypes (G-protein-coupled receptors: P2Y1, 

P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14). 

Last year, we showed the functional expression of 

P2X1 and P2X7 on mice brown adipocytes, with a 

variety of techniques including Ca2+-imaging, reverse 

transcriptase-mediated polymerase chain reactions 

(RT-PCR) and Western blotting [7]. Although we 

also showed the expression of P2X5 using RT-PCR 

techniques, there was no conclusive proof of the ex-

pression of P2X5 in the protein levels. P2X5 receptor 

is known to be expressed in coeliac ganglia [8] or in 

trigeminal mesencephalic nucleus neurons [9] and 

plays roles of neural signal transductions. 

In this study, we have investigated whether P2X5 

receptor was expressed on mouse brown adipocytes 

and white adipocytes. Changes in intracellular 

calcium concentration ([Ca2+]i) were measured by 

fluorometry with Fura-2. The results demonstrated 

that the activation of P2X5 by 2MeSATP stimula-
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tion causes Ca2+ influx from extracellular space. 

And we detected the expression of P2X5 in mice 

brown adipocytes using RT-PCR, western blotting 

and immunostaining techniques. Also we compared 

the amount of P2X5 receptor mRNA expressed in 

mouse brown adipocytes with white adipocytes using 

real-time PCR method. The roles of these purinergic 

receptors are discussed in terms of Ca2+ dynamics in 

mouse brown adipocytes.

Method

Cell isolation

Preparations and solutions are essentially similar to 

those in the previous study [7, 10]. Mice (C57BL/6J 

supplied from SLC Japan: Male, 4 weeks old) 

were anesthetized and killed. All procedures were 

performed in accordance with the Animal Experi-

mentation Guide lines of Nagoya University of Arts 

and Sciences. Interscapular brown adipose tissues 

were isolated. Brown adipocytes were isolated by 

treatment with collagenase type-2 and DNase-I and 

cultured for 7 days. Culture medium was composed 

of D-MEM, 10% fetal bovine serum, penicillin and 

streptomycin. Adipocytes cultured from mice for 2–7 

days were used for imaging of [Ca2+]i. 

Imaging with Fura-2 and analysis

Mouse brown adipocytes were loaded with Fura-2/

AM (5 μM) for 40 min at 37°C. Changes in [Ca2+]i 

were measured from adipocytes with conventional 

Ca2+-imaging system (CCD camera, C4742-12R, 

Hamamatsu photonics, Shizuoka, Japan) set on an 

inverted microscope (ECLIPSE Ti with an objective, 

40 x water, numerical aperture 1.15, NIKON, Tokyo, 

Japan). Fura-2 was excited alternatively at 340 nm 

(D340, Chroma Technology Corp., Vermont, USA) 

and 380 nm (D380, Chroma Technology Corp.) us-

ing a filter changer (EFC-1, Nikon, Tokyo, Japan) 

for the inverted microscope. Fura-2 fluorescence 

was recorded through a band-pass filter (D535/30, 

Chroma Technology Corp.). Fluorescence inten-

sity was averaged over the contour of each cell by 

software (Aquacosmos, Hamamatsu photonics) in 

the experiments of single cell culture, while it was 

averaged over the area containing several numbers 

of cells in the experiments of adipose tissue. The 

ratio of fluorescence excited at 340 nm to that at 380 

nm, F340/380, was converted to a [Ca2+]i value using 

the dissociation constant of 145 nM, the ratio of the 

maximum F340/F380 to the minimum (14.1) and 

the fluorescence ratio of the free to the Ca-bound 

form (9.59). 

RNA isolation and RT-PCR

Total RNA was extracted with the RNeasy Lipid 

Tissue mini kit (Qiagen, Germany) from brown and 

white adipose tissues isolated from 4 weeks mice 

under anesthesia and homogenized at 20,000 rpm 

(Ultra-Turrax T-25). After incubation at room tem-

perature for 5 min and vortexed with addition of 

chloroform (0.2 ml homogenate /ml QIAzol, Qiagen, 

Germany) for 15 sec, samples were centrifuged at 

12,000 rpm and 4°C for 15 min. The upper aqueous 

phase of centrifuges was mixed with 70% ethanol, 

incubated at room temperature for 10 min, and cen-

trifuged in RNeasy Min Spin Column at 20°C and 

12,000 rpm for 15 sec, adsorbing RNA to the silica 

gel membrane. After addition of 350 μl RW1 buffer, 

the column was recentrifuged at 20°C and 12,000 

rpm for 15 sec. 10 μl DNase I and RDD buffer were 

added to the silica gel membrane of the column. The 

column was washed with 350 μl RW1 buffer with 

centrifugation at 20°C and 12,000 rpm for 15 sec, 

then washed twice with 500 μl PRE buffer with cen-

trifugation at 20°C and 12,000 rpm for 15 sec and 2 

min, and finally centrifuged at 15,000 rpm for 1 min 

for drying the silica gel membrane. For extraction 

of RNA, 20 μl RNase free water was added to the 

silica gel membrane, then left for 2 min and finally 

centrifuged at 15,000 rpm and 20°C for 1 min. After 

repetition of this procedure twice, the collected RNA 

in aqua solution was stored at –80°C. 

Reverse transcription was performed with the 

First-Strand cDNA Synthesis kit (Applied Biosys-

tems, Inc., California, USA). cDNA was stored at 

–20°C and subjected to the standard RT-PCR. For the 
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standard RT-PCR, 0.5 μl First Strand cDNA reaction 

mixture was added to a 49.5 μl PCR reaction mixture 

consisting of 0.5 μM of each primer, PCR buffer 

(provided in the kit), 2 mM MgCl2, 200 μM each 

dNTP mix, and 1.25 units Taq DNA polymerase. The 

sense and antisense oligonucleotide primers specific 

for different purinergic receptor subtypes are listed 

in Table 1. Each fragment of cDNA was amplified 

in a DNA thermal cycler (model 2400 GeneAmp 

PCR system; California, USA). The mixture was 

first denatured at 94°C for 2 min and then cycles of 

denaturation at 94°C for 30 sec, annealing at 64°C for 

30 sec and extension at 72°C for 30 sec were repeated 

for 40 cycles. This was followed by a final exten-

sion at 72°C for 2 min to ensure complete product 

extension. The PCR products were electrophoresed 

through a 2% agarose gel, and stained with ethidium 

bromide. For real-time PCR, the reaction mixture 

containing 0.2 μl cDNA, 12.5 μl SYBR Green I, 

2 μl of each primer (5 mM) and 8.3 μl water was 

subjected to PCR analysis (Miniopticon, Bio-Rad, 

Tokyo, Japan). The oligonucleotide primers used for 

the detection or quantification of P2X5 receptor were 

sense 5’- TCCACCAATCTCTACTGC -3’ and anti-

sense 5’- CCAGGTCACAGAAGAAAG -3’. These 

sequences of primers for P2X5 receptor were the 

same as used before [7].

Protein isolation and western blotting analysis

Brown adipose tissues isolated from mice were 

homogenized in 20 mM Tris buffer (pH 7.4) with 1 

mM EGTA containing protease inhibitors (mix tablet; 

Roche Diagnostics, Indiana, USA) with Potter-Elver-

hjem homogenizer and then centrifuged at 4°C and 

25,000 rpm (50,000 g) for 60 min. After removing the 

supernatant including lipid fraction, the precipitate 

was placed in 1 ml TE buffer. Precipitated fractions 

were denatured and separated by SDS-PAGE calibrat-

ed with prestained protein molecular weight markers 

(Bio-Rad, California, USA). Separated proteins were 

transferred to nitrocellulose membranes (Hybond-

C, Bio-Rad). After being blocked with 5% nonfat 

dry milk in Tris-buffered saline and 0.1% Tween 20 

(Sigma Aldrich, Missouri, USA), membranes were 

stained with affinity-purified polyclonal antibodies 

(1/500) specific for P2X5 at 20°C for 1 hour and 

then at 4°C over night. After washing the primary 

antibody, membranes were stained with anti-rabbit 

horseradish peroxidase-conjugated IgG (1/10,000) 

for 1 hr. An enhanced luminol-linked chemical lu-

minescence detection system (ECL; Amersham, New 

Jersey, USA) was used to detect each protein.

Immunohistostaining

 Immunohistostaining of P2X5 receptor was ob-

served in optical slices obtained with confocal la-

ser scanning microscopy (FLUOVIEW, Olympus, 

Japan). We fixed brown adipocytes and fibroblasts 

overnight with a fixation solution, washed with six 10 

min changes of a phosphate-buffered solution (PBS). 

After a brief wash with PBS, brown adipocytes and 

fibroblasts were incubated in a blocking solution for 

1 h. These cells were probed using indirect immuno-

fluorescence. A polyclonal antibody to mouse P2X5 

receptor (1:100, Abcum, Cambridge, UK) served as 

the primary antibody. Alexa 488-conjugated donkey 

anti-rabbit IgG (1:1000, Molecular Probes,Eugene, 

OR, USA) served as secondary antibody. Each an-

tibody was diluted with the blocking solution to the 

concentration indicated, respectively, above.

Statistical analyses

Statistical data were shown by the mean ± S.E. of 

the mean. Significant differences among groups were 

assessed by Student’s t test. 

Drugs

Collagenase type-2 (class 2) was obtained from 

Worthington Biochemical (New Jersey, USA), 

DNase-I from Roche Diagnostics (Indiana, USA). 

D-MEM (low glucose type, 11885-084), penicillin 

and streptomycin were from Applied Biosystems, 

Inc. (California, USA). Fetal bovine serum was 

from Thermo Electron (Melbourne, Australia). ATP 

and 2MeSATP were from Sigma Aldrich (Missouri, 

USA). Fura-2/AM was from Molecular Probes, Inc. 
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(Oregon, USA). 

Solutions

The composition of normal Krebs Ringer solution 

was (mM): NaCl, 150; KCl, 5; CaC12, 2.0; MgSO4, 

1.0; HEPES, 20.0; glucose, 5 (pH 7.4 adjusted with 

NaOH). A nominally Ca2+ -free Krebs solution was 

made by subtracting 5 mM CaC12 from Krebs solu-

tion, in which total CaC12 was replaced with 5 mM 

NaCl. Drugs were applied by changing a perfusing 

solution to the solution containing a drug(s). The 

blocking solution comprisesd: 3% normal donkey 

serum dissolved in the PBS and supplemented with 

1% bovine serum albumin and 0.3% Triton X.

Results

Ca2+ imaging

The application of ATP elicited Ca2+ responses in 

mouse brown adipocytes. P2X5 receptor has been 

known to rise ([Ca2+]i) in response to 2MeSATP 

[11]. The averaged [Ca2+]i of brown adipocytes 

was increased in response to the application of 1 

μM 2MeSATP (113.2 ± 32.4 nM, n=22) (Fig. 1A). 

The irrigation with the nominally Ca2+-free solution 

suppressed the magnitude of Ca2+ rises partially in 

response to the application of 1 μM 2MeSATP (22.6 

± 12.2 nM, n=12) (Fig. 1B). These results indicated 

that the most part of Ca2+ rises by the application of 

2MeSATP was elicited by influx from extracellular 

Ca2+ via P2X5 receptor. That is, P2X5 receptor exists 

on mouse brown adipocytes functionally.

RT-PCR and real-time PCR analysis

RT-PCR reactions with specific primers for P2X5 

receptor subtype yielded cDNA fragments. This 

cDNA fragments showed that brown adipocytes 

expressed P2X5 receptor mRNA (Fig. 2). We used 

brain and heart tissue as a control. They are already 

known to possess P2X5 receptor [12, 13, 14]. We 

confirmed that P2X5 subtypes occurred in mouse 

brown adipocytes and a little in white adipocyte. 

The detection of P2X5 in brown adipocyte agreed 

with their Ca2+ responses to 2MeSATP and previous 

Figure 1  

Ca2+ responses in mouse brown adipocytes by the effects 

of ATP and 2MeSATP.

A. Effects of application of 2MeSATP (a P2X5, P2Y1 and P2Y11 ago-
nist). 2MeSATP (1 mM) and ATP (10 mM) were applied during the 
period indicated by a black and grey horizontal bar in each. B. Ef-
fects of Nominally Ca2+-free Krebs solution on 2MeSATP-induced 
Ca2+ response. 2MeSATP (1 mM) was applied during the period in-
dicated by a black horizontal bar. A nominally Ca2+-free Krebs solu-
tion was superfused to the bath for the period indicated by a grey 
horizontal bar. 

Figure 2 
PCR-amplified products from P2X5 cDNA reverse-tran-
scribed from mRNA isolated from heart, brain, white 
adipose tissue (WAT) and brown adipose tissue (BAT).

Oligonucleotide primers specific for P2X5 purinergic receptor sub-
types were run in separate reactions and the products run on agarose 
gel electrophoresis. The expected product size of each reaction is 400 
bp. Marker consists of 10 fragments between 100 bp and 1 kbp in 
multiples of 100 bp from the bottom.
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paper submitted in last year [7]. In order to compare 

the amount of P2X5 receptor expression in mouse 

brown with white adipocytes, we took advantage of 

real-time PCR analysis for quantification (Fig. 3). 

These results showed the expression levels of P2X5 

receptor on brown adipocytes are 9.3 ± 0.3 higher 

than that of white adipocytes (N=10, mean ± S.E.M.).

Western blotting and Immunohistostaining

In order to confirm the translation of mRNA for 

P2X5 receptor subtypes in brown adipocytes, we 

applied western blotting analysis to detect P2X5 

receptor protein. Western blotting analysis revealed 

molecules involved in P2X5 receptor in mouse brain, 

heart and brown adipocytes but not in white adipo-

cyte (Fig. 4). Immunohistostaining analysis revealed 

that brown adipocytes were immunopositive for P2X5 

receptor antibody but fibroblasts were not (Fig. 5). 

These results suggested that proteins for P2X5 recep-

tors occurred only in mouse brown adipocytes but not 

in white adipocytes or fibroblasts.

Discussion

Some researchers investigated about the expres-

sion of ATP receptors on brown adipocytes, whereas 

there was no evidence how the activation of P2X5 

receptor affect thermogenesis in mouse brown adipo-

cytes [5, 6, 7]. The present study showed that P2X5 

receptors were expressed only in brown adipocytes 

functionally among mouse adipose tissue and elicits 

Ca2+ responses by the application of ATP. In Ca2+-im-

aging study, nominally Ca2+-free Krebs decreased 

Ca2+ responses partially, not completely, elicited by 

the application of 2MeSATP. These results indicate 

Figure 4 

Western blotting of mouse purinergic signaling proteins 

subtype of P2X5.

The results of western blotting analysis of P2X5 receptor. We detected P2X5 
receptor proteins in mouse heart, brown adipose tissue (BAT) and brain but 
not in white adipose tissue (WAT).

Figure 3 
Real-time PCR analysis of mouse P2X5 receptor of brown adipocyte and white adipocyte.

A. Changes in fluorescence were shown by a black line (brown adipose tissue: BAT) and a grey (white adipose tissue: WAT) line, vertical bars 
indicate S.E.M. of 10 mice. B. Comparison of the levels for P2X5 receptor mRNA expression in brown adipocytes and white adipocytes. These 
results represented as mean values (fold change respect to WAT as control), vertical bars indicate S.E.M. of 10 mice adipose tissue. *p < 0.05 to 
the control.
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that mouse brown adipocytes expressed both P2X5 

and P2Y1 and/or P2Y11 receptors. These results agree 

with the previous paper submitted in last year [7]. 

RT-PCR and real-time PCR studies suggested that 

brown adipocytes have a large amount of P2X5 re-

ceptor mRNA than white adipocytes. Also, western 

blotting analysis indicated that brown adipocytes had 

much of P2X5 proteins but white adipocytes had no 

signals for the existence of P2X5 proteins. Immuno-

histostaining analysis revealed that P2X5 receptors 

were expressed in brown adipocytes but not in fibro-

blasts. P2X5 immunoreactivity was observed on the 

membrane of brown adipocytes in addition to intra-

cellular spaces. We concluded that the components of 

P2X5 immunoreactivity in intracellular spaces were 

endogenous P2X5 proteins such as a transportation 

phase from ribosome to membrane.

UCP1 (uncoupling protein 1) is already known to 

be a marker of brown adipocytes, even though UCP1 

exists only in the intracellular spaces. In the case we 

use UCP1 as a marker of brown adipocytes, it takes 

times and efforts to distinguish brown adipocytes 

from other cells because we must perforate the mem-

brane of brown adipocytes for immunohistostaining. 

In this study, we showed that the existence of P2X5 

were only in and on mouse brown adipocytes but not 

in white adipocytes and not on fibroblasts. Brown 

adipocytes are present in all mammalian especially 

in neonates or cold-acclimated adult which are mixed 

together with white adipocytes and fibroblasts in in-

terscapular and armpit depots. Among these tissues, 

we indicated that P2X5 receptors expressed only in 

brown adipocytes. That is, P2X5 receptors can be 

available as tools to identify and target white and 

brown adipocytes. Recently, Ussar et al reported that 

P2X5 and PAT2 which is an amino acid transporter 

could be cell surface markers for classical brown 

adipocytes and beige adipocytes in mice [15]. Our 

results agree with their researches. 

Last year, Rines et al reported that adenosine de-

rived from ATP hydrolysis activates brown or beige 

adipocytes through the A2A receptor [16]. We think 

adenosine also elicits Ca2+ rises by the activation of 

adenylyl cyclase via A2A receptor in the same way as 

noradrenaline via the activation of b3-adrenoceptor 

and it is important for thermogenesis in mouse brown 

adipocytes [10]. It is known that elevation of [Ca2+]i 

increased oxygen consumption and thermogenesis 

in mouse brown adipocytes [17]. Our report will be 

the first time that confirm the functional expression 

of P2X5 receptor due to intracellular Ca2+ elevation 

in mouse brown adipocytes. We concluded that ATP 

released from sympathetic nerves activates P2X5 

subtypes in addition to P2X1 and P2X7 of purinergic 

Figure 5 

Immunohistostaining confocal images of P2X5 receptor.

A. DIC image. A brown adipocyte and fibroblasts are pointed to a place by white arrow and arrow head, respectively. B. Immunoreactivity for P2X5 
receptor (green). C. Their overlay. Scale bar 10 μm.
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receptor and causes Ca2+ influx from extracellular 

space. Simultaneously, ATP activate P2Y receptors 

and elicits a large phasic rise in [Ca2+]i via Ca2+ 

release from the ER through IP3 receptors [7]. We 

assume that these Ca2+ elicited by the ATP released 

from sympathetic nerve contribute to thermogenesis 

in mouse brown adipocytes.
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要旨

　褐色脂肪細胞は熱産生器官である。寒冷曝露により交感神経から放出されたノルアドレナリンを
受容し、中性脂肪から遊離脂肪酸を生成する。この遊離脂肪酸がもつエネルギーを熱に変換する事
で熱産生を行っている。その際、褐色脂肪細胞内では Ca2+ 濃度が上昇する。この Ca2+ は褐色脂肪
細胞での熱産生量および酸素消費量を増大する事が知られている。交感神経はノルアドレナリンと
同時にATPを神経伝達物質として放出する。
　昨年の私たちの研究により、マウス褐色脂肪細胞における複数のATP受容体サブタイプ発現が確
認された。その中でも P2X5受容体シグナルが遺伝子レベルにおいて強い事が示されたが、タンパク
レベルでの発現の有無や、他の脂肪組織における P2X5受容体の存在については明らかにされていな
かった。
　今回の研究により、マウス褐色脂肪細胞が P2X5受容体タンパクを機能的に発現する事が確認され
た。また脂肪組織間における P2X5遺伝子発現量を比較したところ、白色脂肪細胞に比べ褐色脂肪細
胞では約 9倍発現量が高い事が示された。白色脂肪細胞および繊維芽細胞にはP2X5受容体タンパク
は確認できなかった。以上の結果から、脂肪組織において P2X5受容体の分布を調べる事で、褐色脂
肪細胞の分布を比較的容易に確認する事ができると思われる。これら P2X5受容体は、交感神経から
放出されたATPを受容する事で細胞内Ca2+ 濃度を上昇させ、熱産生を促進している可能性が考え
られる。
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